

Subsurface Water Ice Mapping (SWIM) in the Northern Hemisphere of Mars

2019 March 6 Overview for Human Landing Sites Study Google Hangout

<u>Than Putzig</u>,^a <u>Gareth Morgan</u>,^a Bruce Campbell,^b Hanna Sizemore,^a Isaac Smith,^a Zach Bain,^a Marco Mastrogiuseppe,^c David Hollibaugh Baker,^d Matthew Perry,^a Rachael Hoover,^e Ali Bramson,^f Eric Petersen,^f Asmin Pathare,^a Colin Dundas^g

^a Planetary Science Institute, ^b Smithsonian Institution, ^c Consultant,

^d NASA Goddard Space Flight Center, ^e Southwest Research Institute, ^f University of Arizona, ^g USGS-Flagstaff

Outline

Prior State of Knowledge
Methods

Arcadia Planitia Results
Expanded Study Plans

Human Landing Site Selection Workshop (2015)

Prior detection of shallow (<1 m) water ice

2. Methods

4. Expanded Study Plans

 Theory + Thermal Data = ice is likely present all across the high (>50°) latitudes of Mars.

TES derived 60 Depth of the 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 30 ice table atitude 0 [Mellon et al., -30 2004]. 0.00 -60 180 120 240 180 Longitude

1. Prior State of Knowledge 3. Arcadia Planitia Results

• Neutron Spectrometer mapped water ice in these same regions.

 Fresh ice-exposing small impact craters provide direct evidence of shallow ice as far south at 39 °N

Prior detection of ice: Morphology Studies

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

Combination of high resolution image (MOC) and surface roughness studies (MOLA) led to the Mars **Ice Age Hypothesis** (Head et al., 2003).

Mars at low obliquity? Head et al (2003)

Dissected Mantle at mid-latitudes

Prior detection of 1. Prior State of Knowledge 3. Arcadia Planitia Results deep (>20 m) water ice 2. Methods 4. Expanded Study Plans

Shallow Radar (SHARAD) has shown that some of the glacial features are nearly pure water ice.

> Mid-latitude non-glacial ice detection by SHARAD has also been reported including Arcadia

SHARAD profile

Ferraced Crater

[[]Bramson et al., 2015].

Ice stability zones and prior detections

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

Human Landing Site Selection Workshop (2015)

SWIM Approach to
Mapping Ice1. Prior State of Knowledge3. Arcadia Planitia Results2. Methods4. Expanded Study Plans

- Previous Martian subsurface ice studies used datasets in **isolation** or combined techniques in **limited geographical areas.**
- For this study, we *combine previous methods with newly developed techniques* to probe the subsurface for water ice. New techniques include:
 - Measuring **SHARAD** surface power return to infer presence of ice within the top 5 m.
 - State-of-the-art_super-resolution processing techniques that increase data resolution, potentially resolving top of ice.
 - The *"split-chirp" technique*, sub-band processing to measure *material loss properties* thereby constraining bulk composition.

SWIM Pilot Study Swaths and theoretical ice-stability limits + SHARAD ice detections

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

Human Landing Site Selection Workshop (2015)

TES: MGS Thermal Emission Spectrometer THEMIS: ODY Thermal Imaging System

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

- Apparent thermal inertia (ATI) varies seasonally at locations where the subsurface is heterogeneous within ~1 m depth [Putzig & Mellon 2007].
- Comparing observed and modeled ATI, we find locations of layering consistent with shallow ice, some patches now found southward to ~30°N.
- **SWIM TES:** improved resolution by factor of 4 and greatly infilled layer-matching coverage.
- **SWIM THEMIS:** seasonal nighttime images, focused on areas of interest (sparse in Arcadia).
- TES/THEMIS differences:
 - THEMIS uses nighttime data only
 - TES uses day & night model match

SHARAD Surface Reflection Mapping

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

New Technique corrects the SHARAD surface reflection to map density variations in the upper 5 m. Low power = low density materials/**ice**. High power = High density/rock

- In northern Arcadia Planitia, we find isolated, low-power areas, e.g. within the **Erebus Montes glacial features.**
- An extensive belt of low-power returns (indicative of low-density materials) correlates with regions of known dust upwelling in northern Amazonis.
- The **Medusae Fossae Formation** exhibits low power, consistent with prior estimates of low dielectric permittivity [Waters et al. 2007; Carter et al. 2009; Morgan et al. 2015].

1. Prior State of Knowledge 3. Arcadia Planitia Results

Geomorphology

2. Methods

- Geomorphology <u>bridges the gap</u> between shallow and deep data sets.
- We investigate shallow ice by mapping landforms interpreted to be ice-rich such as **patterned ground**, **scalloped pits** and **mantling units**.
- Mapping is conducted using image data such as **CTX** and **HiRISE**.
- We also use **SHARAD roughness** (10-100 m horizontal baseline) to trace the boundary of dissected mantle and no mantle (white line at right).

SHARAD Subsurface Reflector Mapping

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

- We extended reflector mapping of Bramson et al. [2015], including southward extension to ~ 35.6°N.
- Using 23 topographic features, we find real dielectric permittivity between 3 and 6, with a median of 5, above the shallow reflector.
- Our revised permittivity allows a large fraction of non-ice material* without ruling out ice presence.
 - * See also Campbell & Morgan [2018].

Previous state-of-the-art mapping in Arcadia Planitia [Bramson et al. 2015]:

This work:

- Increased coverage
- *Refined dielectric constants* (material composition)
- More-equatorward detections

Composite Ice Consistency

Prior State of Knowledge 3. Arcadia Planitia Results
Methods 4. Expanded Study Plans

We introduce the SWIM Equation, in the spirit of the famous Drake Equation:

 $C_{I} = (C_{N} + C_{T} + C_{G} + C_{RS} + C_{RD}) \div 5$ Consistency of data with the presence of buried ice

We map **consistency values** for each dataset:

Consistency of neutron-detected hydrogen with shallow (< 1 m) ice
Consistency of thermal behavior with shallow (< 1 m) ice
Consistency of geomorphology with shallow and deep ice
Consistency of radar surface echoes with shallow (< 5 m) ice
Consistency of radar dielectric properties with deep (> 5 m) ice

Consistency values range between +1 and -1, where:

- +1 Data are *consistent* with the presence of ice
- 0 Data are absent or gives no indication of ice presence or absence
- -1 Data are *inconsistent* with the presence of ice

Consistency: Arcadia Planitia

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

Study Swaths

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

Four main northern hemisphere regions:

Final products will provide further constraints to facilitate human landing site studies.

Consistency: Deuteronilus

20°

1. Prior State of Knowledge 3. Arcadia Planitia Results

.0.6

0

-0.6 Geomorphology

Consistency

35°

2. Methods

25°

30°

30°

4. Expanded Study Plans

Glacial Features

30°

0

25° We carried out a preliminary 45° test of consistency mapping in a subset of Deuteronilus Mensae.

20°

45

35°

17

35°

£ ...

Study Products https://swim.psi.edu

1. Prior State of Knowledge 3. Arcadia Planitia Results

2. Methods

4. Expanded Study Plans

Primary products for each swath

Ice consistency maps

From neutron & thermal data, morphological features, radar surface reflectors, subsurface dielectric values, and composites from all data

- Top of ice depth maps From thermal data & SHARAD surface returns
- Base of ice depth maps From SHARAD subsurface reflectors
- Ice concentration maps Pilot study produc now available! From SHARAD+DTM permittivity estimates

In addition, we will provide supplemental products associated with each study element & swath

